241 research outputs found

    A real-time fingerprint-based indoor positioning using deep learning and preceding states

    Get PDF
    In fingerprint-based positioning methods, the received signal strength (RSS) vectors from access points are measured at reference points and saved in a database. Then, this dataset is used for the training phase of a pattern recognition algorithm. Several noise types impact the signals in radio channels, and RSS values are corrupted correspondingly. These noises can be mitigated by averaging the RSS samples. In real-time applications, the users cannot wait to collect uncorrelated RSS samples to calculate their average in the online phase of the positioning process. In this paper, we propose a solution for this problem by leveraging the distribution of RSS samples in the offline phase and the preceding state of the user in the online phase. In the first step, we propose a fast and accurate positioning algorithm using a deep neural network (DNN) to learn the distribution of available RSS samples instead of averaging them at the offline phase. Then, the similarity of an online RSS sample to the RPs’ fingerprints is obtained to estimate the user’s location. Next, the proposed DNN model is combined with a novel state-based positioning method to more accurately estimate the user’s location. Extensive experiments on both benchmark and our collected datasets in two different scenarios (single RSS sample and many RSS samples for each user in the online phase) verify the superiority of the proposed algorithm compared with traditional regression algorithms such as deep neural network regression, Gaussian process regression, random forest, and weighted KNN

    Compressed Sensing based Dynamic PSD Map Construction in Cognitive Radio Networks

    Get PDF
    In the context of spectrum sensing in cognitive radio networks, collaborative spectrum sensing has been proposed as a way to overcome multipath and shadowing, and hence increasing the reliability of the sensing. Due to the high amount of information to be transmitted, a dynamic compressive sensing approach is proposed to map the PSD estimate to a sparse domain which is then transmitted to the fusion center. In this regard, CRs send a compressed version of their estimated PSD to the fusion center, whose job is to reconstruct the PSD estimates of the CRs, fuse them, and make a global decision on the availability of the spectrum in space and frequency domains at a given time. The proposed compressive sensing based method considers the dynamic nature of the PSD map, and uses this dynamicity in order to decrease the amount of data needed to be transmitted between CR sensors’ and the fusion center. By using the proposed method, an acceptable PSD map for cognitive radio purposes can be achieved by only 20 % of full data transmission between sensors and master node. Also, simulation results show the robustness of the proposed method against the channel variations, diverse compression ratios and processing times in comparison with static methods

    New Reconstructed Database for Cost Reduction in Indoor Fingerprinting Localization

    Get PDF
    Location fingerprinting is a technique widely suggested for challenging indoor positioning. Despite the significant benefits of this technique, it needs a considerable amount of time and energy to measure the Received Signal Strength (RSS) at Reference Points (RPs) and build a fingerprinting database to achieve an appropriate localization accuracy. Reducing the number of RPs can reduce this cost, but it noticeably degrades the accuracy of positioning. In order to alleviate this problem, this paper takes the interior architecture of the indoor area and signal propagation effects into account and proposes two novel recovery methods for creating the reconstructed database instead of the measured one. They only need a few numbers of RPs to reconstruct the database and even are able to produce a denser database. The first method is a new zone-based path-loss propagation model which employs fingerprints of different zones separately and the second one is a new interpolation method, zone-based Weighted Ring-based (WRB). The proposed methods are compared with the conventional path-loss model and six interpolation functions. Two different test environments along with a benchmarking testbed, and various RPs configurations are also utilized to verify the proposed recovery methods, based on the reconstruction errors and the localization accuracies they provide. The results indicate that by taking only 11% of the initial RPs, the new zone-based path-loss model decreases the localization error up to 26% compared to the conventional path-loss model and the proposed zone-based WRB method outperforms all the other interpolation methods and improves the accuracy by 40%

    Confidence interval estimation for fingerprint-based indoor localization

    Get PDF
    Fingerprint-based localization methods provide high accuracy location estimation, which use machine learning algorithms to recognize the statistical patterns of collected data. In these methods, the users’ locations can be estimated based on the received signal strength vectors from some transmitters. However, the data collection is a labor-intensive phase, and the collected data should be updated periodically. Many researchers have contributed to reducing this cost. The easiest way to remove the data collection cost is to use fingerprints generated by the model-based approaches, in which the trained machine learning algorithm can be updated based on the environment changes. Probabilistic-based localization algorithms, in addition to the user location, can estimate a region of interest called 2σ confidence interval in which the probability of user presence is 95%. Gaussian process regression (GPR) is a probabilistic method that can be used to achieve this goal. However, conventional GPR (CGPR) cannot accurately estimate the confidence interval when noise-free fingerprints generated by the model-based approaches are used in the training phase. In this paper, we propose a novel GPR-based localization algorithm, named enhanced GPR (EGPR), which improves the accuracy level of confidence interval estimation compared to the existing methods while fixing the level of computational complexity in the online phase. We also theoretically prove that GPR-based algorithms are minimum variance unbiased and efficient estimators. Experiments under line-of-sight and non-line-of-sight conditions demonstrate the superiority of our proposed method over counterparts in terms of accuracy as well as applicability in real-time localization systems

    Joint Coordinate Optimization in Fingerprint-Based Indoor Positioning

    Get PDF
    Fingerprint-based indoor positioning uses pattern recognition algorithms (PRAs) to estimate the users’ locations in wireless local area network environments, where satellite-based positioning methods cannot work properly. Traditionally, the training phase of PRA is separately conducted for \u1d465 and \u1d466 coordinates. However, the received signal strength from access points is a unique fingerprint for each measured point, not for \u1d465 and \u1d466 coordinates separately. In this letter, we propose a method to jointly employ the \u1d465 and \u1d466 coordinates during the training phase using a novel PRA-based Gaussian process regression (GPR), named 2D-GPR. Experimental results show that the proposed 2D-GPR improves the accuracy of positioning more than 40\u1d450\u1d45a in limited data samples and has a lower calculation cost compared with conventional GPR

    Fingerprinting Based Indoor Localization Considering the Dynamic Nature of Wi-Fi Signals

    Get PDF
    Current localization techniques in the outdoors cannot work well in indoors. The Wi-Fi fingerprinting technique is an emerging localization technique for indoor environments. However, in this technique, the dynamic nature of WiFi signals affects the accuracy of the measurements. In this paper, we use the affinity propagation clustering method to decrease the computation complexity in location estimation. Then, we use the least variance of Received Signal Strength (RSS) measured among Access Points (APs) in each cluster. Also, we assign lower weights to alter APs for each point in a cluster, to represent the level of similarity to Test Point (TP) by considering the dynamic nature of signals in indoor environments. A method for updating the radio map and improving the results is then proposed to decrease the cost of constructing the radio map. Simulation results show that the proposed method has 22.5% improvement in average in localization results, considering one altering AP in the layout, compared to the case when only RSS subset sampling is considered for localization because of altering APs

    Complexity Reduction in Beamforming of Uniform Array Antennas for MIMO Radars

    Get PDF
    Covariance matrix design and beamforming in multiple-input multiple-output (MIMO) radar systems have always been a time-consuming task with a substantial number of unknown variables in the optimization problem to be solved. Based on the radar and target conditions, beamforming can be a dynamic process and in real-time scenarios, it is critical to have a fast beamforming. In this paper, we propose a beampattern matching design technique that is much faster compared to the well-known traditional semidefinite quadratic programming (SQP) counterpart. We show how to calculate the covariance matrix of the probing transmitted signal to obtain the MIMO radar desired beampattern, using a facilitator library. While the proposed technique inherently satisfies the required practical constraints in covariance matrix design, it significantly reduces the number of unknown variables used in the minimum square error (MSE) optimization problem, and therefore reduces the computational complexity considerably. Simulation results show the superiority of the proposed technique in terms of complexity and speed, compared with existing methods. This superiority is enhanced by increasing the number of antennas

    Topological superconductivity of spin-3/2 carriers in a three-dimensional doped Luttinger semimetal

    Full text link
    We investigate topological Cooper pairing, including gapless Weyl and fully gapped class DIII superconductivity, in a three-dimensional doped Luttinger semimetal. The latter describes effective spin-3/2 carriers near a quadratic band touching and captures the normal-state properties of the 227 pyrochlore iridates and half-Heusler alloys. Electron-electron interactions may favor non-ss-wave pairing in such systems, including even-parity dd-wave pairing. We argue that the lowest energy dd-wave pairings are always of complex (e.g., d+idd + i d) type, with nodal Weyl quasiparticles. This implies ϱ(E)E2\varrho(E) \sim |E|^2 scaling of the density of states (DoS) at low energies in the clean limit, or ϱ(E)E\varrho(E) \sim |E| over a wide critical region in the presence of disorder. The latter is consistent with the TT-dependence of the penetration depth in the half-Heusler compound YPtBi. We enumerate routes for experimental verification, including specific heat, thermal conductivity, NMR relaxation time, and topological Fermi arcs. Nucleation of any dd-wave pairing also causes a small lattice distortion and induces an ss-wave component; this gives a route to strain-engineer exotic s+ds+d pairings. We also consider odd-parity, fully gapped pp-wave superconductivity. For hole doping, a gapless Majorana fluid with cubic dispersion appears at the surface. We invent a generalized surface model with ν\nu-fold dispersion to simulate a bulk with winding number ν\nu. Using exact diagonalization, we show that disorder drives the surface into a critically delocalized phase, with universal DoS and multifractal scaling consistent with the conformal field theory (CFT) SO(nn)ν{}_\nu, where n0n \rightarrow 0 counts replicas. This is contrary to the naive expectation of a surface thermal metal, and implies that the topology tunes the surface renormalization group to the CFT in the presence of disorder.Comment: Published Version in PRB (Editors' Suggestion): 49 Pages, 17 Figures, 3 Table

    Reconfigurable Linear Antenna Arrays for Beam-Pattern Matching in Collocated MIMO Radars

    Get PDF
    Beam-pattern matching plays an important role in multiple-input multiple-output radars. In the vast majority of research done in this area, the aim is to find the covariance matrix of the waveforms fed into the transmit array. Also, reconfiguring a preset array of antennas (antenna selection), which means turning off some of the antennas in the array, is an effective technique to reach the desired beam patterns, dynamically. In this article, we introduce a novel multistep method to implement this reconfiguration technique to a uniform linear array. In each step, by exploiting the relation between the diagonal elements of a covariance matrix resulted from solving a beam-pattern matching problem and the transmitted power of the antennas, we find the least important antenna of the array and turn it off accordingly. Then, we repeat this process until a predefined number of antennas remains. Our proposed method outperforms its counterparts in the literature in terms of beam-pattern matching as well as computational complexity, which makes it an appropriate method for real-time applications. Simulations are used to show the validity and superiority of the proposed method
    corecore